Çarpanlara Ayırma Formülleri yada Çarpanlara Ayırma Özdeşlikleri bu bilgiler matematik çarpanlara ayırma konusuna çalışırken çok işinize yarayacak iyi çalışmalar..
Çarpanlara Ayırma ve Özdeşlikler Formülleri
ÖNEMLİ ÖZDEŞLİKLER
Tam Kare Özdeşliği:
İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
İki Terim farkının Karesi : (a - b)2 = a2 - 2ab + b2
Üç Terim Toplamının Karesi: (a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc)
İki Terim Toplamının Küpü: (a + b)3 = a3 + 3a2b + 3ab2 + b3
İki Terim Farkının Küpü : (a - b)3 = a3 - 3a2b + 3ab2 - b3
İki Kare Farkı Özdeşliği: a2 – b2 = (a + b).(a – b)
xn + yn veya xn - yn biçimindeki polinomların Özdeşliği
İki küp Toplamı : a3 + b3 = (a + b).(a2 – ab + b2)
İki küp Farkı : a3 - b3 = (a - b).(a2 + ab + b2)
a4 + b4 = (a + b) (a3 – a2b + ab2 – b3)
a4 – b4 = (a2 + b2) (a + b) (a – b)
a5 + b5 = (a + b) (a4 – a3b + a2 b2 – ab3 + b4)
a5 – b5 = (a – b) (a4 + a3b + a2 b2 + ab3 + b4)
a6 + b6 = (a + b) (a5 – a4b + a3 b2 – a2b3 + ab4 – b5)
a6 – b6 = (a – b) (a2 + ab + b2) (a+ b) (a2 + ab + b2)
a7 + b7 = (a + b) (a6 – a5b + a4b2 – a3b3 + a2b4 – ab5 + b6)
a7 – b7 = (a – b) (a6 + a5b + a4b2 + a3b3 + a2b4 + ab5 + b6)
Özdeşlikleri aşağıdaki gibi düzenleyerekde kullanabiliriz.
x2 + y2 = (x + y)2 – 2xy
x2 + y2 = (x – y)2 + 2xy
(x – y)2 = (x + y)2 – 4xy
(x + y)2 = (x – y)2 + 4xy
x3 – y3 = (x – y)3 + 3xy (x – y)
x3 + y3 = (x + y)3 – 3xy (x + y)
x2 + y2 + z2 = (x + y + z)2 – 2 (xy + xz + yz)
Direkt olarak hayatımızda yer edinmeyen fakat bilimin dahil olduğu her konuda var olan bir konu başlığından bahsedeceğiz. TYT Matematik çarpanlara ayırma konu anlatımı her ne kadar oturup evde ailenizle konuşacağınız bir konu olmasa da ilerleyen hayatınızda tıptan ekonomiye; mühendislikten mimarlığa kadar her alanda önem teşkil edecek. Bu yüzden dersi iyi anlamalı ve sınavda kesinlikle yüksek netler çıkarmalısınız. Bu hususta tyt matematik çarpanlara ayırma soru çözümü içerikleri ile sizleri desteklemeye çalışacağız.
YanıtlaSilhttps://yksdestek.com/carpanlara-ayirma-tyt-matematik/